Рассчитать высоту треугольника со сторонами 140, 128 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 128 + 28}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-140)(148-128)(148-28)}}{128}\normalsize = 26.3391344}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-140)(148-128)(148-28)}}{140}\normalsize = 24.0814943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-140)(148-128)(148-28)}}{28}\normalsize = 120.407471}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 128 и 28 равна 26.3391344
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 128 и 28 равна 24.0814943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 128 и 28 равна 120.407471
Ссылка на результат
?n1=140&n2=128&n3=28
Найти высоту треугольника со сторонами 73, 67 и 17
Найти высоту треугольника со сторонами 71, 62 и 53
Найти высоту треугольника со сторонами 135, 118 и 116
Найти высоту треугольника со сторонами 101, 76 и 35
Найти высоту треугольника со сторонами 122, 119 и 17
Найти высоту треугольника со сторонами 61, 56 и 54
Найти высоту треугольника со сторонами 71, 62 и 53
Найти высоту треугольника со сторонами 135, 118 и 116
Найти высоту треугольника со сторонами 101, 76 и 35
Найти высоту треугольника со сторонами 122, 119 и 17
Найти высоту треугольника со сторонами 61, 56 и 54