Рассчитать высоту треугольника со сторонами 140, 128 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 128 + 52}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-140)(160-128)(160-52)}}{128}\normalsize = 51.9615242}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-140)(160-128)(160-52)}}{140}\normalsize = 47.5076793}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-140)(160-128)(160-52)}}{52}\normalsize = 127.90529}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 128 и 52 равна 51.9615242
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 128 и 52 равна 47.5076793
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 128 и 52 равна 127.90529
Ссылка на результат
?n1=140&n2=128&n3=52
Найти высоту треугольника со сторонами 148, 133 и 19
Найти высоту треугольника со сторонами 135, 76 и 60
Найти высоту треугольника со сторонами 121, 109 и 16
Найти высоту треугольника со сторонами 62, 52 и 40
Найти высоту треугольника со сторонами 54, 40 и 26
Найти высоту треугольника со сторонами 126, 85 и 70
Найти высоту треугольника со сторонами 135, 76 и 60
Найти высоту треугольника со сторонами 121, 109 и 16
Найти высоту треугольника со сторонами 62, 52 и 40
Найти высоту треугольника со сторонами 54, 40 и 26
Найти высоту треугольника со сторонами 126, 85 и 70