Рассчитать высоту треугольника со сторонами 140, 130 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 130 + 52}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-140)(161-130)(161-52)}}{130}\normalsize = 51.9999977}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-140)(161-130)(161-52)}}{140}\normalsize = 48.2857122}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-140)(161-130)(161-52)}}{52}\normalsize = 129.999994}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 130 и 52 равна 51.9999977
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 130 и 52 равна 48.2857122
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 130 и 52 равна 129.999994
Ссылка на результат
?n1=140&n2=130&n3=52
Найти высоту треугольника со сторонами 123, 108 и 90
Найти высоту треугольника со сторонами 102, 97 и 39
Найти высоту треугольника со сторонами 146, 115 и 107
Найти высоту треугольника со сторонами 84, 72 и 46
Найти высоту треугольника со сторонами 120, 106 и 19
Найти высоту треугольника со сторонами 119, 116 и 69
Найти высоту треугольника со сторонами 102, 97 и 39
Найти высоту треугольника со сторонами 146, 115 и 107
Найти высоту треугольника со сторонами 84, 72 и 46
Найти высоту треугольника со сторонами 120, 106 и 19
Найти высоту треугольника со сторонами 119, 116 и 69