Рассчитать высоту треугольника со сторонами 140, 130 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 130 + 63}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-140)(166.5-130)(166.5-63)}}{130}\normalsize = 62.8106527}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-140)(166.5-130)(166.5-63)}}{140}\normalsize = 58.3241775}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-140)(166.5-130)(166.5-63)}}{63}\normalsize = 129.609283}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 130 и 63 равна 62.8106527
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 130 и 63 равна 58.3241775
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 130 и 63 равна 129.609283
Ссылка на результат
?n1=140&n2=130&n3=63
Найти высоту треугольника со сторонами 143, 137 и 29
Найти высоту треугольника со сторонами 150, 117 и 39
Найти высоту треугольника со сторонами 135, 135 и 121
Найти высоту треугольника со сторонами 133, 92 и 45
Найти высоту треугольника со сторонами 105, 69 и 61
Найти высоту треугольника со сторонами 145, 125 и 89
Найти высоту треугольника со сторонами 150, 117 и 39
Найти высоту треугольника со сторонами 135, 135 и 121
Найти высоту треугольника со сторонами 133, 92 и 45
Найти высоту треугольника со сторонами 105, 69 и 61
Найти высоту треугольника со сторонами 145, 125 и 89