Рассчитать высоту треугольника со сторонами 140, 132 и 57

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 132 + 57}{2}} \normalsize = 164.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164.5(164.5-140)(164.5-132)(164.5-57)}}{132}\normalsize = 56.8549092}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164.5(164.5-140)(164.5-132)(164.5-57)}}{140}\normalsize = 53.6060573}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164.5(164.5-140)(164.5-132)(164.5-57)}}{57}\normalsize = 131.664}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 132 и 57 равна 56.8549092
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 132 и 57 равна 53.6060573
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 132 и 57 равна 131.664
Ссылка на результат
?n1=140&n2=132&n3=57