Рассчитать высоту треугольника со сторонами 140, 133 и 127
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 133 + 127}{2}} \normalsize = 200}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{200(200-140)(200-133)(200-127)}}{133}\normalsize = 115.204066}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{200(200-140)(200-133)(200-127)}}{140}\normalsize = 109.443863}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{200(200-140)(200-133)(200-127)}}{127}\normalsize = 120.646778}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 133 и 127 равна 115.204066
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 133 и 127 равна 109.443863
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 133 и 127 равна 120.646778
Ссылка на результат
?n1=140&n2=133&n3=127
Найти высоту треугольника со сторонами 124, 108 и 64
Найти высоту треугольника со сторонами 118, 112 и 14
Найти высоту треугольника со сторонами 101, 94 и 70
Найти высоту треугольника со сторонами 136, 104 и 62
Найти высоту треугольника со сторонами 133, 109 и 40
Найти высоту треугольника со сторонами 88, 72 и 18
Найти высоту треугольника со сторонами 118, 112 и 14
Найти высоту треугольника со сторонами 101, 94 и 70
Найти высоту треугольника со сторонами 136, 104 и 62
Найти высоту треугольника со сторонами 133, 109 и 40
Найти высоту треугольника со сторонами 88, 72 и 18