Рассчитать высоту треугольника со сторонами 140, 134 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 134 + 31}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-134)(152.5-31)}}{134}\normalsize = 30.8950661}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-134)(152.5-31)}}{140}\normalsize = 29.5709918}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-134)(152.5-31)}}{31}\normalsize = 133.546415}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 134 и 31 равна 30.8950661
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 134 и 31 равна 29.5709918
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 134 и 31 равна 133.546415
Ссылка на результат
?n1=140&n2=134&n3=31
Найти высоту треугольника со сторонами 140, 129 и 98
Найти высоту треугольника со сторонами 108, 82 и 40
Найти высоту треугольника со сторонами 149, 125 и 55
Найти высоту треугольника со сторонами 116, 99 и 60
Найти высоту треугольника со сторонами 119, 104 и 40
Найти высоту треугольника со сторонами 118, 72 и 56
Найти высоту треугольника со сторонами 108, 82 и 40
Найти высоту треугольника со сторонами 149, 125 и 55
Найти высоту треугольника со сторонами 116, 99 и 60
Найти высоту треугольника со сторонами 119, 104 и 40
Найти высоту треугольника со сторонами 118, 72 и 56