Рассчитать высоту треугольника со сторонами 140, 135 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 135 + 75}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-140)(175-135)(175-75)}}{135}\normalsize = 73.3295921}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-140)(175-135)(175-75)}}{140}\normalsize = 70.7106781}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-140)(175-135)(175-75)}}{75}\normalsize = 131.993266}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 135 и 75 равна 73.3295921
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 135 и 75 равна 70.7106781
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 135 и 75 равна 131.993266
Ссылка на результат
?n1=140&n2=135&n3=75
Найти высоту треугольника со сторонами 130, 112 и 99
Найти высоту треугольника со сторонами 136, 105 и 86
Найти высоту треугольника со сторонами 96, 80 и 59
Найти высоту треугольника со сторонами 30, 25 и 25
Найти высоту треугольника со сторонами 128, 123 и 22
Найти высоту треугольника со сторонами 104, 92 и 73
Найти высоту треугольника со сторонами 136, 105 и 86
Найти высоту треугольника со сторонами 96, 80 и 59
Найти высоту треугольника со сторонами 30, 25 и 25
Найти высоту треугольника со сторонами 128, 123 и 22
Найти высоту треугольника со сторонами 104, 92 и 73