Рассчитать высоту треугольника со сторонами 140, 136 и 131
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 136 + 131}{2}} \normalsize = 203.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{203.5(203.5-140)(203.5-136)(203.5-131)}}{136}\normalsize = 116.944835}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{203.5(203.5-140)(203.5-136)(203.5-131)}}{140}\normalsize = 113.603554}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{203.5(203.5-140)(203.5-136)(203.5-131)}}{131}\normalsize = 121.408379}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 136 и 131 равна 116.944835
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 136 и 131 равна 113.603554
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 136 и 131 равна 121.408379
Ссылка на результат
?n1=140&n2=136&n3=131
Найти высоту треугольника со сторонами 126, 94 и 61
Найти высоту треугольника со сторонами 63, 53 и 11
Найти высоту треугольника со сторонами 138, 129 и 53
Найти высоту треугольника со сторонами 50, 45 и 21
Найти высоту треугольника со сторонами 128, 121 и 57
Найти высоту треугольника со сторонами 143, 115 и 105
Найти высоту треугольника со сторонами 63, 53 и 11
Найти высоту треугольника со сторонами 138, 129 и 53
Найти высоту треугольника со сторонами 50, 45 и 21
Найти высоту треугольника со сторонами 128, 121 и 57
Найти высоту треугольника со сторонами 143, 115 и 105