Рассчитать высоту треугольника со сторонами 140, 137 и 126
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 137 + 126}{2}} \normalsize = 201.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{201.5(201.5-140)(201.5-137)(201.5-126)}}{137}\normalsize = 113.406473}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{201.5(201.5-140)(201.5-137)(201.5-126)}}{140}\normalsize = 110.976335}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{201.5(201.5-140)(201.5-137)(201.5-126)}}{126}\normalsize = 123.307038}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 137 и 126 равна 113.406473
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 137 и 126 равна 110.976335
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 137 и 126 равна 123.307038
Ссылка на результат
?n1=140&n2=137&n3=126
Найти высоту треугольника со сторонами 90, 84 и 15
Найти высоту треугольника со сторонами 97, 76 и 65
Найти высоту треугольника со сторонами 79, 61 и 33
Найти высоту треугольника со сторонами 130, 124 и 91
Найти высоту треугольника со сторонами 66, 61 и 50
Найти высоту треугольника со сторонами 125, 119 и 34
Найти высоту треугольника со сторонами 97, 76 и 65
Найти высоту треугольника со сторонами 79, 61 и 33
Найти высоту треугольника со сторонами 130, 124 и 91
Найти высоту треугольника со сторонами 66, 61 и 50
Найти высоту треугольника со сторонами 125, 119 и 34