Рассчитать высоту треугольника со сторонами 140, 137 и 135
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 137 + 135}{2}} \normalsize = 206}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{206(206-140)(206-137)(206-135)}}{137}\normalsize = 119.143053}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{206(206-140)(206-137)(206-135)}}{140}\normalsize = 116.589988}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{206(206-140)(206-137)(206-135)}}{135}\normalsize = 120.908136}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 137 и 135 равна 119.143053
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 137 и 135 равна 116.589988
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 137 и 135 равна 120.908136
Ссылка на результат
?n1=140&n2=137&n3=135
Найти высоту треугольника со сторонами 63, 56 и 33
Найти высоту треугольника со сторонами 141, 106 и 91
Найти высоту треугольника со сторонами 61, 55 и 26
Найти высоту треугольника со сторонами 63, 49 и 26
Найти высоту треугольника со сторонами 148, 147 и 7
Найти высоту треугольника со сторонами 146, 136 и 99
Найти высоту треугольника со сторонами 141, 106 и 91
Найти высоту треугольника со сторонами 61, 55 и 26
Найти высоту треугольника со сторонами 63, 49 и 26
Найти высоту треугольника со сторонами 148, 147 и 7
Найти высоту треугольника со сторонами 146, 136 и 99