Рассчитать высоту треугольника со сторонами 140, 139 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 139 + 64}{2}} \normalsize = 171.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171.5(171.5-140)(171.5-139)(171.5-64)}}{139}\normalsize = 62.5098486}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171.5(171.5-140)(171.5-139)(171.5-64)}}{140}\normalsize = 62.0633497}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171.5(171.5-140)(171.5-139)(171.5-64)}}{64}\normalsize = 135.763577}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 139 и 64 равна 62.5098486
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 139 и 64 равна 62.0633497
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 139 и 64 равна 135.763577
Ссылка на результат
?n1=140&n2=139&n3=64
Найти высоту треугольника со сторонами 78, 69 и 16
Найти высоту треугольника со сторонами 143, 138 и 39
Найти высоту треугольника со сторонами 147, 89 и 79
Найти высоту треугольника со сторонами 131, 100 и 51
Найти высоту треугольника со сторонами 134, 93 и 68
Найти высоту треугольника со сторонами 99, 91 и 36
Найти высоту треугольника со сторонами 143, 138 и 39
Найти высоту треугольника со сторонами 147, 89 и 79
Найти высоту треугольника со сторонами 131, 100 и 51
Найти высоту треугольника со сторонами 134, 93 и 68
Найти высоту треугольника со сторонами 99, 91 и 36