Рассчитать высоту треугольника со сторонами 140, 76 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 76 + 68}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-140)(142-76)(142-68)}}{76}\normalsize = 30.9929846}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-140)(142-76)(142-68)}}{140}\normalsize = 16.8247631}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-140)(142-76)(142-68)}}{68}\normalsize = 34.6392181}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 76 и 68 равна 30.9929846
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 76 и 68 равна 16.8247631
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 76 и 68 равна 34.6392181
Ссылка на результат
?n1=140&n2=76&n3=68
Найти высоту треугольника со сторонами 150, 142 и 83
Найти высоту треугольника со сторонами 99, 90 и 40
Найти высоту треугольника со сторонами 128, 125 и 48
Найти высоту треугольника со сторонами 52, 50 и 38
Найти высоту треугольника со сторонами 81, 62 и 42
Найти высоту треугольника со сторонами 132, 114 и 88
Найти высоту треугольника со сторонами 99, 90 и 40
Найти высоту треугольника со сторонами 128, 125 и 48
Найти высоту треугольника со сторонами 52, 50 и 38
Найти высоту треугольника со сторонами 81, 62 и 42
Найти высоту треугольника со сторонами 132, 114 и 88