Рассчитать высоту треугольника со сторонами 140, 83 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 83 + 69}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-140)(146-83)(146-69)}}{83}\normalsize = 49.6729089}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-140)(146-83)(146-69)}}{140}\normalsize = 29.4489389}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-140)(146-83)(146-69)}}{69}\normalsize = 59.7514702}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 83 и 69 равна 49.6729089
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 83 и 69 равна 29.4489389
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 83 и 69 равна 59.7514702
Ссылка на результат
?n1=140&n2=83&n3=69
Найти высоту треугольника со сторонами 102, 102 и 85
Найти высоту треугольника со сторонами 124, 121 и 120
Найти высоту треугольника со сторонами 116, 111 и 43
Найти высоту треугольника со сторонами 103, 103 и 23
Найти высоту треугольника со сторонами 89, 65 и 62
Найти высоту треугольника со сторонами 90, 86 и 44
Найти высоту треугольника со сторонами 124, 121 и 120
Найти высоту треугольника со сторонами 116, 111 и 43
Найти высоту треугольника со сторонами 103, 103 и 23
Найти высоту треугольника со сторонами 89, 65 и 62
Найти высоту треугольника со сторонами 90, 86 и 44