Рассчитать высоту треугольника со сторонами 140, 89 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 89 + 63}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-140)(146-89)(146-63)}}{89}\normalsize = 45.7476212}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-140)(146-89)(146-63)}}{140}\normalsize = 29.0824163}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-140)(146-89)(146-63)}}{63}\normalsize = 64.6275918}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 89 и 63 равна 45.7476212
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 89 и 63 равна 29.0824163
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 89 и 63 равна 64.6275918
Ссылка на результат
?n1=140&n2=89&n3=63
Найти высоту треугольника со сторонами 54, 36 и 36
Найти высоту треугольника со сторонами 144, 92 и 58
Найти высоту треугольника со сторонами 107, 84 и 39
Найти высоту треугольника со сторонами 85, 81 и 48
Найти высоту треугольника со сторонами 149, 134 и 29
Найти высоту треугольника со сторонами 134, 94 и 54
Найти высоту треугольника со сторонами 144, 92 и 58
Найти высоту треугольника со сторонами 107, 84 и 39
Найти высоту треугольника со сторонами 85, 81 и 48
Найти высоту треугольника со сторонами 149, 134 и 29
Найти высоту треугольника со сторонами 134, 94 и 54