Рассчитать высоту треугольника со сторонами 140, 89 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 89 + 75}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-140)(152-89)(152-75)}}{89}\normalsize = 66.8448639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-140)(152-89)(152-75)}}{140}\normalsize = 42.4942349}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-140)(152-89)(152-75)}}{75}\normalsize = 79.3225718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 89 и 75 равна 66.8448639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 89 и 75 равна 42.4942349
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 89 и 75 равна 79.3225718
Ссылка на результат
?n1=140&n2=89&n3=75
Найти высоту треугольника со сторонами 46, 45 и 21
Найти высоту треугольника со сторонами 109, 102 и 18
Найти высоту треугольника со сторонами 108, 100 и 34
Найти высоту треугольника со сторонами 138, 103 и 40
Найти высоту треугольника со сторонами 140, 137 и 69
Найти высоту треугольника со сторонами 140, 132 и 39
Найти высоту треугольника со сторонами 109, 102 и 18
Найти высоту треугольника со сторонами 108, 100 и 34
Найти высоту треугольника со сторонами 138, 103 и 40
Найти высоту треугольника со сторонами 140, 137 и 69
Найти высоту треугольника со сторонами 140, 132 и 39