Рассчитать высоту треугольника со сторонами 140, 92 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 92 + 58}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-140)(145-92)(145-58)}}{92}\normalsize = 39.7474007}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-140)(145-92)(145-58)}}{140}\normalsize = 26.1197204}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-140)(145-92)(145-58)}}{58}\normalsize = 63.0476011}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 92 и 58 равна 39.7474007
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 92 и 58 равна 26.1197204
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 92 и 58 равна 63.0476011
Ссылка на результат
?n1=140&n2=92&n3=58
Найти высоту треугольника со сторонами 149, 147 и 5
Найти высоту треугольника со сторонами 135, 105 и 86
Найти высоту треугольника со сторонами 147, 107 и 102
Найти высоту треугольника со сторонами 137, 128 и 30
Найти высоту треугольника со сторонами 129, 100 и 41
Найти высоту треугольника со сторонами 114, 70 и 48
Найти высоту треугольника со сторонами 135, 105 и 86
Найти высоту треугольника со сторонами 147, 107 и 102
Найти высоту треугольника со сторонами 137, 128 и 30
Найти высоту треугольника со сторонами 129, 100 и 41
Найти высоту треугольника со сторонами 114, 70 и 48