Рассчитать высоту треугольника со сторонами 140, 96 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 96 + 84}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-140)(160-96)(160-84)}}{96}\normalsize = 82.1921867}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-140)(160-96)(160-84)}}{140}\normalsize = 56.3603566}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-140)(160-96)(160-84)}}{84}\normalsize = 93.9339277}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 96 и 84 равна 82.1921867
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 96 и 84 равна 56.3603566
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 96 и 84 равна 93.9339277
Ссылка на результат
?n1=140&n2=96&n3=84
Найти высоту треугольника со сторонами 45, 33 и 26
Найти высоту треугольника со сторонами 64, 54 и 22
Найти высоту треугольника со сторонами 81, 61 и 23
Найти высоту треугольника со сторонами 119, 80 и 79
Найти высоту треугольника со сторонами 89, 64 и 40
Найти высоту треугольника со сторонами 37, 35 и 25
Найти высоту треугольника со сторонами 64, 54 и 22
Найти высоту треугольника со сторонами 81, 61 и 23
Найти высоту треугольника со сторонами 119, 80 и 79
Найти высоту треугольника со сторонами 89, 64 и 40
Найти высоту треугольника со сторонами 37, 35 и 25