Рассчитать высоту треугольника со сторонами 140, 99 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 99 + 66}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-99)(152.5-66)}}{99}\normalsize = 60.0025454}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-99)(152.5-66)}}{140}\normalsize = 42.4303714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-99)(152.5-66)}}{66}\normalsize = 90.0038181}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 99 и 66 равна 60.0025454
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 99 и 66 равна 42.4303714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 99 и 66 равна 90.0038181
Ссылка на результат
?n1=140&n2=99&n3=66
Найти высоту треугольника со сторонами 137, 111 и 42
Найти высоту треугольника со сторонами 76, 75 и 22
Найти высоту треугольника со сторонами 110, 106 и 83
Найти высоту треугольника со сторонами 126, 77 и 56
Найти высоту треугольника со сторонами 125, 80 и 73
Найти высоту треугольника со сторонами 105, 82 и 61
Найти высоту треугольника со сторонами 76, 75 и 22
Найти высоту треугольника со сторонами 110, 106 и 83
Найти высоту треугольника со сторонами 126, 77 и 56
Найти высоту треугольника со сторонами 125, 80 и 73
Найти высоту треугольника со сторонами 105, 82 и 61