Рассчитать высоту треугольника со сторонами 141, 100 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 100 + 46}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-141)(143.5-100)(143.5-46)}}{100}\normalsize = 24.6702123}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-141)(143.5-100)(143.5-46)}}{141}\normalsize = 17.4966045}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-141)(143.5-100)(143.5-46)}}{46}\normalsize = 53.6308963}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 100 и 46 равна 24.6702123
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 100 и 46 равна 17.4966045
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 100 и 46 равна 53.6308963
Ссылка на результат
?n1=141&n2=100&n3=46
Найти высоту треугольника со сторонами 102, 97 и 74
Найти высоту треугольника со сторонами 135, 107 и 76
Найти высоту треугольника со сторонами 86, 58 и 50
Найти высоту треугольника со сторонами 75, 43 и 41
Найти высоту треугольника со сторонами 43, 25 и 23
Найти высоту треугольника со сторонами 136, 100 и 41
Найти высоту треугольника со сторонами 135, 107 и 76
Найти высоту треугольника со сторонами 86, 58 и 50
Найти высоту треугольника со сторонами 75, 43 и 41
Найти высоту треугольника со сторонами 43, 25 и 23
Найти высоту треугольника со сторонами 136, 100 и 41