Рассчитать высоту треугольника со сторонами 141, 100 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 100 + 60}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-141)(150.5-100)(150.5-60)}}{100}\normalsize = 51.1246122}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-141)(150.5-100)(150.5-60)}}{141}\normalsize = 36.2585902}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-141)(150.5-100)(150.5-60)}}{60}\normalsize = 85.207687}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 100 и 60 равна 51.1246122
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 100 и 60 равна 36.2585902
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 100 и 60 равна 85.207687
Ссылка на результат
?n1=141&n2=100&n3=60
Найти высоту треугольника со сторонами 128, 93 и 67
Найти высоту треугольника со сторонами 91, 79 и 41
Найти высоту треугольника со сторонами 102, 69 и 34
Найти высоту треугольника со сторонами 145, 136 и 81
Найти высоту треугольника со сторонами 113, 71 и 50
Найти высоту треугольника со сторонами 108, 77 и 50
Найти высоту треугольника со сторонами 91, 79 и 41
Найти высоту треугольника со сторонами 102, 69 и 34
Найти высоту треугольника со сторонами 145, 136 и 81
Найти высоту треугольника со сторонами 113, 71 и 50
Найти высоту треугольника со сторонами 108, 77 и 50