Рассчитать высоту треугольника со сторонами 141, 100 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 100 + 76}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-141)(158.5-100)(158.5-76)}}{100}\normalsize = 73.1759822}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-141)(158.5-100)(158.5-76)}}{141}\normalsize = 51.8978597}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-141)(158.5-100)(158.5-76)}}{76}\normalsize = 96.2841871}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 100 и 76 равна 73.1759822
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 100 и 76 равна 51.8978597
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 100 и 76 равна 96.2841871
Ссылка на результат
?n1=141&n2=100&n3=76
Найти высоту треугольника со сторонами 145, 115 и 58
Найти высоту треугольника со сторонами 117, 111 и 62
Найти высоту треугольника со сторонами 121, 118 и 116
Найти высоту треугольника со сторонами 149, 128 и 65
Найти высоту треугольника со сторонами 125, 104 и 43
Найти высоту треугольника со сторонами 54, 35 и 34
Найти высоту треугольника со сторонами 117, 111 и 62
Найти высоту треугольника со сторонами 121, 118 и 116
Найти высоту треугольника со сторонами 149, 128 и 65
Найти высоту треугольника со сторонами 125, 104 и 43
Найти высоту треугольника со сторонами 54, 35 и 34