Рассчитать высоту треугольника со сторонами 141, 101 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 101 + 54}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-141)(148-101)(148-54)}}{101}\normalsize = 42.3644288}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-141)(148-101)(148-54)}}{141}\normalsize = 30.3461511}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-141)(148-101)(148-54)}}{54}\normalsize = 79.2371724}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 101 и 54 равна 42.3644288
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 101 и 54 равна 30.3461511
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 101 и 54 равна 79.2371724
Ссылка на результат
?n1=141&n2=101&n3=54
Найти высоту треугольника со сторонами 118, 100 и 32
Найти высоту треугольника со сторонами 140, 125 и 108
Найти высоту треугольника со сторонами 140, 101 и 81
Найти высоту треугольника со сторонами 112, 83 и 37
Найти высоту треугольника со сторонами 144, 126 и 108
Найти высоту треугольника со сторонами 148, 103 и 93
Найти высоту треугольника со сторонами 140, 125 и 108
Найти высоту треугольника со сторонами 140, 101 и 81
Найти высоту треугольника со сторонами 112, 83 и 37
Найти высоту треугольника со сторонами 144, 126 и 108
Найти высоту треугольника со сторонами 148, 103 и 93