Рассчитать высоту треугольника со сторонами 141, 107 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 107 + 80}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-141)(164-107)(164-80)}}{107}\normalsize = 79.4344935}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-141)(164-107)(164-80)}}{141}\normalsize = 60.2800767}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-141)(164-107)(164-80)}}{80}\normalsize = 106.243635}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 107 и 80 равна 79.4344935
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 107 и 80 равна 60.2800767
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 107 и 80 равна 106.243635
Ссылка на результат
?n1=141&n2=107&n3=80
Найти высоту треугольника со сторонами 128, 125 и 65
Найти высоту треугольника со сторонами 66, 66 и 62
Найти высоту треугольника со сторонами 113, 110 и 57
Найти высоту треугольника со сторонами 139, 129 и 101
Найти высоту треугольника со сторонами 50, 39 и 16
Найти высоту треугольника со сторонами 138, 106 и 39
Найти высоту треугольника со сторонами 66, 66 и 62
Найти высоту треугольника со сторонами 113, 110 и 57
Найти высоту треугольника со сторонами 139, 129 и 101
Найти высоту треугольника со сторонами 50, 39 и 16
Найти высоту треугольника со сторонами 138, 106 и 39