Рассчитать высоту треугольника со сторонами 141, 110 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 110 + 101}{2}} \normalsize = 176}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176(176-141)(176-110)(176-101)}}{110}\normalsize = 100.399203}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176(176-141)(176-110)(176-101)}}{141}\normalsize = 78.3256195}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176(176-141)(176-110)(176-101)}}{101}\normalsize = 109.345667}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 110 и 101 равна 100.399203
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 110 и 101 равна 78.3256195
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 110 и 101 равна 109.345667
Ссылка на результат
?n1=141&n2=110&n3=101
Найти высоту треугольника со сторонами 118, 86 и 79
Найти высоту треугольника со сторонами 135, 121 и 43
Найти высоту треугольника со сторонами 83, 75 и 26
Найти высоту треугольника со сторонами 77, 60 и 21
Найти высоту треугольника со сторонами 121, 113 и 98
Найти высоту треугольника со сторонами 139, 104 и 59
Найти высоту треугольника со сторонами 135, 121 и 43
Найти высоту треугольника со сторонами 83, 75 и 26
Найти высоту треугольника со сторонами 77, 60 и 21
Найти высоту треугольника со сторонами 121, 113 и 98
Найти высоту треугольника со сторонами 139, 104 и 59