Рассчитать высоту треугольника со сторонами 141, 115 и 33

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 115 + 33}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-141)(144.5-115)(144.5-33)}}{115}\normalsize = 22.4309952}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-141)(144.5-115)(144.5-33)}}{141}\normalsize = 18.2947833}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-141)(144.5-115)(144.5-33)}}{33}\normalsize = 78.1686197}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 115 и 33 равна 22.4309952
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 115 и 33 равна 18.2947833
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 115 и 33 равна 78.1686197
Ссылка на результат
?n1=141&n2=115&n3=33