Рассчитать высоту треугольника со сторонами 141, 118 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 118 + 41}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-141)(150-118)(150-41)}}{118}\normalsize = 36.7792705}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-141)(150-118)(150-41)}}{141}\normalsize = 30.779815}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-141)(150-118)(150-41)}}{41}\normalsize = 105.852535}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 118 и 41 равна 36.7792705
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 118 и 41 равна 30.779815
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 118 и 41 равна 105.852535
Ссылка на результат
?n1=141&n2=118&n3=41
Найти высоту треугольника со сторонами 110, 97 и 51
Найти высоту треугольника со сторонами 124, 117 и 92
Найти высоту треугольника со сторонами 115, 98 и 87
Найти высоту треугольника со сторонами 106, 79 и 54
Найти высоту треугольника со сторонами 79, 70 и 42
Найти высоту треугольника со сторонами 103, 95 и 78
Найти высоту треугольника со сторонами 124, 117 и 92
Найти высоту треугольника со сторонами 115, 98 и 87
Найти высоту треугольника со сторонами 106, 79 и 54
Найти высоту треугольника со сторонами 79, 70 и 42
Найти высоту треугольника со сторонами 103, 95 и 78