Рассчитать высоту треугольника со сторонами 141, 120 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 120 + 55}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-141)(158-120)(158-55)}}{120}\normalsize = 54.0396048}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-141)(158-120)(158-55)}}{141}\normalsize = 45.991153}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-141)(158-120)(158-55)}}{55}\normalsize = 117.904592}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 120 и 55 равна 54.0396048
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 120 и 55 равна 45.991153
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 120 и 55 равна 117.904592
Ссылка на результат
?n1=141&n2=120&n3=55
Найти высоту треугольника со сторонами 138, 132 и 74
Найти высоту треугольника со сторонами 126, 86 и 75
Найти высоту треугольника со сторонами 136, 113 и 69
Найти высоту треугольника со сторонами 131, 100 и 63
Найти высоту треугольника со сторонами 102, 102 и 31
Найти высоту треугольника со сторонами 130, 101 и 76
Найти высоту треугольника со сторонами 126, 86 и 75
Найти высоту треугольника со сторонами 136, 113 и 69
Найти высоту треугольника со сторонами 131, 100 и 63
Найти высоту треугольника со сторонами 102, 102 и 31
Найти высоту треугольника со сторонами 130, 101 и 76