Рассчитать высоту треугольника со сторонами 141, 123 и 114
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 123 + 114}{2}} \normalsize = 189}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{189(189-141)(189-123)(189-114)}}{123}\normalsize = 108.962988}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{189(189-141)(189-123)(189-114)}}{141}\normalsize = 95.0528194}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{189(189-141)(189-123)(189-114)}}{114}\normalsize = 117.565329}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 123 и 114 равна 108.962988
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 123 и 114 равна 95.0528194
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 123 и 114 равна 117.565329
Ссылка на результат
?n1=141&n2=123&n3=114
Найти высоту треугольника со сторонами 113, 109 и 94
Найти высоту треугольника со сторонами 80, 53 и 50
Найти высоту треугольника со сторонами 74, 49 и 27
Найти высоту треугольника со сторонами 149, 147 и 108
Найти высоту треугольника со сторонами 148, 98 и 78
Найти высоту треугольника со сторонами 147, 142 и 109
Найти высоту треугольника со сторонами 80, 53 и 50
Найти высоту треугольника со сторонами 74, 49 и 27
Найти высоту треугольника со сторонами 149, 147 и 108
Найти высоту треугольника со сторонами 148, 98 и 78
Найти высоту треугольника со сторонами 147, 142 и 109