Рассчитать высоту треугольника со сторонами 141, 124 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 124 + 65}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-141)(165-124)(165-65)}}{124}\normalsize = 64.9901938}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-141)(165-124)(165-65)}}{141}\normalsize = 57.1544966}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-141)(165-124)(165-65)}}{65}\normalsize = 123.981293}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 124 и 65 равна 64.9901938
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 124 и 65 равна 57.1544966
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 124 и 65 равна 123.981293
Ссылка на результат
?n1=141&n2=124&n3=65
Найти высоту треугольника со сторонами 67, 59 и 52
Найти высоту треугольника со сторонами 143, 142 и 115
Найти высоту треугольника со сторонами 69, 68 и 49
Найти высоту треугольника со сторонами 117, 112 и 102
Найти высоту треугольника со сторонами 143, 111 и 103
Найти высоту треугольника со сторонами 84, 73 и 19
Найти высоту треугольника со сторонами 143, 142 и 115
Найти высоту треугольника со сторонами 69, 68 и 49
Найти высоту треугольника со сторонами 117, 112 и 102
Найти высоту треугольника со сторонами 143, 111 и 103
Найти высоту треугольника со сторонами 84, 73 и 19