Рассчитать высоту треугольника со сторонами 141, 125 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 125 + 106}{2}} \normalsize = 186}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{186(186-141)(186-125)(186-106)}}{125}\normalsize = 102.2569}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{186(186-141)(186-125)(186-106)}}{141}\normalsize = 90.6532802}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{186(186-141)(186-125)(186-106)}}{106}\normalsize = 120.585967}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 125 и 106 равна 102.2569
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 125 и 106 равна 90.6532802
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 125 и 106 равна 120.585967
Ссылка на результат
?n1=141&n2=125&n3=106
Найти высоту треугольника со сторонами 130, 105 и 29
Найти высоту треугольника со сторонами 108, 88 и 45
Найти высоту треугольника со сторонами 141, 125 и 26
Найти высоту треугольника со сторонами 69, 61 и 32
Найти высоту треугольника со сторонами 150, 122 и 53
Найти высоту треугольника со сторонами 104, 100 и 18
Найти высоту треугольника со сторонами 108, 88 и 45
Найти высоту треугольника со сторонами 141, 125 и 26
Найти высоту треугольника со сторонами 69, 61 и 32
Найти высоту треугольника со сторонами 150, 122 и 53
Найти высоту треугольника со сторонами 104, 100 и 18