Рассчитать высоту треугольника со сторонами 141, 129 и 102

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 129 + 102}{2}} \normalsize = 186}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{186(186-141)(186-129)(186-102)}}{129}\normalsize = 98.1476906}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{186(186-141)(186-129)(186-102)}}{141}\normalsize = 89.7946957}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{186(186-141)(186-129)(186-102)}}{102}\normalsize = 124.127962}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 129 и 102 равна 98.1476906
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 129 и 102 равна 89.7946957
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 129 и 102 равна 124.127962
Ссылка на результат
?n1=141&n2=129&n3=102