Рассчитать высоту треугольника со сторонами 141, 129 и 117

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 129 + 117}{2}} \normalsize = 193.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{193.5(193.5-141)(193.5-129)(193.5-117)}}{129}\normalsize = 109.766798}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{193.5(193.5-141)(193.5-129)(193.5-117)}}{141}\normalsize = 100.424943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{193.5(193.5-141)(193.5-129)(193.5-117)}}{117}\normalsize = 121.024931}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 129 и 117 равна 109.766798
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 129 и 117 равна 100.424943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 129 и 117 равна 121.024931
Ссылка на результат
?n1=141&n2=129&n3=117