Рассчитать высоту треугольника со сторонами 141, 130 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 130 + 19}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-141)(145-130)(145-19)}}{130}\normalsize = 16.1076262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-141)(145-130)(145-19)}}{141}\normalsize = 14.8510029}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-141)(145-130)(145-19)}}{19}\normalsize = 110.210074}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 130 и 19 равна 16.1076262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 130 и 19 равна 14.8510029
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 130 и 19 равна 110.210074
Ссылка на результат
?n1=141&n2=130&n3=19
Найти высоту треугольника со сторонами 150, 139 и 122
Найти высоту треугольника со сторонами 114, 112 и 85
Найти высоту треугольника со сторонами 143, 120 и 50
Найти высоту треугольника со сторонами 150, 140 и 111
Найти высоту треугольника со сторонами 27, 25 и 6
Найти высоту треугольника со сторонами 138, 129 и 53
Найти высоту треугольника со сторонами 114, 112 и 85
Найти высоту треугольника со сторонами 143, 120 и 50
Найти высоту треугольника со сторонами 150, 140 и 111
Найти высоту треугольника со сторонами 27, 25 и 6
Найти высоту треугольника со сторонами 138, 129 и 53