Рассчитать высоту треугольника со сторонами 141, 130 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 130 + 41}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-141)(156-130)(156-41)}}{130}\normalsize = 40.6939799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-141)(156-130)(156-41)}}{141}\normalsize = 37.5192722}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-141)(156-130)(156-41)}}{41}\normalsize = 129.029692}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 130 и 41 равна 40.6939799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 130 и 41 равна 37.5192722
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 130 и 41 равна 129.029692
Ссылка на результат
?n1=141&n2=130&n3=41
Найти высоту треугольника со сторонами 91, 58 и 41
Найти высоту треугольника со сторонами 64, 43 и 38
Найти высоту треугольника со сторонами 134, 100 и 61
Найти высоту треугольника со сторонами 131, 75 и 71
Найти высоту треугольника со сторонами 51, 41 и 11
Найти высоту треугольника со сторонами 132, 111 и 94
Найти высоту треугольника со сторонами 64, 43 и 38
Найти высоту треугольника со сторонами 134, 100 и 61
Найти высоту треугольника со сторонами 131, 75 и 71
Найти высоту треугольника со сторонами 51, 41 и 11
Найти высоту треугольника со сторонами 132, 111 и 94