Рассчитать высоту треугольника со сторонами 141, 132 и 111
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 132 + 111}{2}} \normalsize = 192}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192(192-141)(192-132)(192-111)}}{132}\normalsize = 104.522527}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192(192-141)(192-132)(192-111)}}{141}\normalsize = 97.8508765}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192(192-141)(192-132)(192-111)}}{111}\normalsize = 124.297059}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 132 и 111 равна 104.522527
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 132 и 111 равна 97.8508765
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 132 и 111 равна 124.297059
Ссылка на результат
?n1=141&n2=132&n3=111
Найти высоту треугольника со сторонами 134, 100 и 45
Найти высоту треугольника со сторонами 122, 86 и 39
Найти высоту треугольника со сторонами 147, 94 и 81
Найти высоту треугольника со сторонами 132, 120 и 44
Найти высоту треугольника со сторонами 150, 136 и 129
Найти высоту треугольника со сторонами 130, 81 и 65
Найти высоту треугольника со сторонами 122, 86 и 39
Найти высоту треугольника со сторонами 147, 94 и 81
Найти высоту треугольника со сторонами 132, 120 и 44
Найти высоту треугольника со сторонами 150, 136 и 129
Найти высоту треугольника со сторонами 130, 81 и 65