Рассчитать высоту треугольника со сторонами 141, 132 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 132 + 67}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-141)(170-132)(170-67)}}{132}\normalsize = 66.5564171}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-141)(170-132)(170-67)}}{141}\normalsize = 62.3081352}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-141)(170-132)(170-67)}}{67}\normalsize = 131.126075}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 132 и 67 равна 66.5564171
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 132 и 67 равна 62.3081352
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 132 и 67 равна 131.126075
Ссылка на результат
?n1=141&n2=132&n3=67
Найти высоту треугольника со сторонами 71, 69 и 69
Найти высоту треугольника со сторонами 144, 84 и 73
Найти высоту треугольника со сторонами 119, 109 и 87
Найти высоту треугольника со сторонами 109, 103 и 35
Найти высоту треугольника со сторонами 107, 95 и 16
Найти высоту треугольника со сторонами 101, 94 и 42
Найти высоту треугольника со сторонами 144, 84 и 73
Найти высоту треугольника со сторонами 119, 109 и 87
Найти высоту треугольника со сторонами 109, 103 и 35
Найти высоту треугольника со сторонами 107, 95 и 16
Найти высоту треугольника со сторонами 101, 94 и 42