Рассчитать высоту треугольника со сторонами 141, 134 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 134 + 62}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-141)(168.5-134)(168.5-62)}}{134}\normalsize = 61.585128}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-141)(168.5-134)(168.5-62)}}{141}\normalsize = 58.5277103}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-141)(168.5-134)(168.5-62)}}{62}\normalsize = 133.103341}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 134 и 62 равна 61.585128
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 134 и 62 равна 58.5277103
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 134 и 62 равна 133.103341
Ссылка на результат
?n1=141&n2=134&n3=62
Найти высоту треугольника со сторонами 129, 115 и 106
Найти высоту треугольника со сторонами 101, 82 и 64
Найти высоту треугольника со сторонами 91, 84 и 84
Найти высоту треугольника со сторонами 115, 95 и 28
Найти высоту треугольника со сторонами 91, 84 и 57
Найти высоту треугольника со сторонами 75, 73 и 55
Найти высоту треугольника со сторонами 101, 82 и 64
Найти высоту треугольника со сторонами 91, 84 и 84
Найти высоту треугольника со сторонами 115, 95 и 28
Найти высоту треугольника со сторонами 91, 84 и 57
Найти высоту треугольника со сторонами 75, 73 и 55