Рассчитать высоту треугольника со сторонами 141, 135 и 113
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 135 + 113}{2}} \normalsize = 194.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{194.5(194.5-141)(194.5-135)(194.5-113)}}{135}\normalsize = 105.237424}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{194.5(194.5-141)(194.5-135)(194.5-113)}}{141}\normalsize = 100.759236}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{194.5(194.5-141)(194.5-135)(194.5-113)}}{113}\normalsize = 125.726126}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 135 и 113 равна 105.237424
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 135 и 113 равна 100.759236
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 135 и 113 равна 125.726126
Ссылка на результат
?n1=141&n2=135&n3=113
Найти высоту треугольника со сторонами 125, 110 и 43
Найти высоту треугольника со сторонами 125, 123 и 68
Найти высоту треугольника со сторонами 137, 127 и 55
Найти высоту треугольника со сторонами 143, 91 и 90
Найти высоту треугольника со сторонами 117, 103 и 50
Найти высоту треугольника со сторонами 122, 103 и 43
Найти высоту треугольника со сторонами 125, 123 и 68
Найти высоту треугольника со сторонами 137, 127 и 55
Найти высоту треугольника со сторонами 143, 91 и 90
Найти высоту треугольника со сторонами 117, 103 и 50
Найти высоту треугольника со сторонами 122, 103 и 43