Рассчитать высоту треугольника со сторонами 141, 135 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 135 + 31}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-141)(153.5-135)(153.5-31)}}{135}\normalsize = 30.8929465}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-141)(153.5-135)(153.5-31)}}{141}\normalsize = 29.578353}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-141)(153.5-135)(153.5-31)}}{31}\normalsize = 134.533799}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 135 и 31 равна 30.8929465
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 135 и 31 равна 29.578353
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 135 и 31 равна 134.533799
Ссылка на результат
?n1=141&n2=135&n3=31
Найти высоту треугольника со сторонами 149, 124 и 53
Найти высоту треугольника со сторонами 134, 83 и 66
Найти высоту треугольника со сторонами 56, 49 и 39
Найти высоту треугольника со сторонами 80, 63 и 49
Найти высоту треугольника со сторонами 144, 133 и 126
Найти высоту треугольника со сторонами 130, 89 и 86
Найти высоту треугольника со сторонами 134, 83 и 66
Найти высоту треугольника со сторонами 56, 49 и 39
Найти высоту треугольника со сторонами 80, 63 и 49
Найти высоту треугольника со сторонами 144, 133 и 126
Найти высоту треугольника со сторонами 130, 89 и 86