Рассчитать высоту треугольника со сторонами 141, 138 и 103
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 138 + 103}{2}} \normalsize = 191}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{191(191-141)(191-138)(191-103)}}{138}\normalsize = 96.7234694}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{191(191-141)(191-138)(191-103)}}{141}\normalsize = 94.6655232}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{191(191-141)(191-138)(191-103)}}{103}\normalsize = 129.590668}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 138 и 103 равна 96.7234694
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 138 и 103 равна 94.6655232
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 138 и 103 равна 129.590668
Ссылка на результат
?n1=141&n2=138&n3=103
Найти высоту треугольника со сторонами 144, 134 и 70
Найти высоту треугольника со сторонами 120, 100 и 83
Найти высоту треугольника со сторонами 150, 106 и 62
Найти высоту треугольника со сторонами 144, 135 и 13
Найти высоту треугольника со сторонами 58, 46 и 29
Найти высоту треугольника со сторонами 145, 141 и 106
Найти высоту треугольника со сторонами 120, 100 и 83
Найти высоту треугольника со сторонами 150, 106 и 62
Найти высоту треугольника со сторонами 144, 135 и 13
Найти высоту треугольника со сторонами 58, 46 и 29
Найти высоту треугольника со сторонами 145, 141 и 106