Рассчитать высоту треугольника со сторонами 141, 138 и 135
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 138 + 135}{2}} \normalsize = 207}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{207(207-141)(207-138)(207-135)}}{138}\normalsize = 119.398492}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{207(207-141)(207-138)(207-135)}}{141}\normalsize = 116.858099}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{207(207-141)(207-138)(207-135)}}{135}\normalsize = 122.051792}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 138 и 135 равна 119.398492
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 138 и 135 равна 116.858099
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 138 и 135 равна 122.051792
Ссылка на результат
?n1=141&n2=138&n3=135
Найти высоту треугольника со сторонами 131, 101 и 57
Найти высоту треугольника со сторонами 129, 113 и 92
Найти высоту треугольника со сторонами 121, 114 и 15
Найти высоту треугольника со сторонами 121, 101 и 48
Найти высоту треугольника со сторонами 109, 106 и 32
Найти высоту треугольника со сторонами 110, 66 и 59
Найти высоту треугольника со сторонами 129, 113 и 92
Найти высоту треугольника со сторонами 121, 114 и 15
Найти высоту треугольника со сторонами 121, 101 и 48
Найти высоту треугольника со сторонами 109, 106 и 32
Найти высоту треугольника со сторонами 110, 66 и 59