Рассчитать высоту треугольника со сторонами 141, 140 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 140 + 37}{2}} \normalsize = 159}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159(159-141)(159-140)(159-37)}}{140}\normalsize = 36.7953968}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159(159-141)(159-140)(159-37)}}{141}\normalsize = 36.5344365}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159(159-141)(159-140)(159-37)}}{37}\normalsize = 139.225826}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 140 и 37 равна 36.7953968
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 140 и 37 равна 36.5344365
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 140 и 37 равна 139.225826
Ссылка на результат
?n1=141&n2=140&n3=37
Найти высоту треугольника со сторонами 150, 139 и 131
Найти высоту треугольника со сторонами 140, 127 и 59
Найти высоту треугольника со сторонами 33, 20 и 18
Найти высоту треугольника со сторонами 149, 149 и 145
Найти высоту треугольника со сторонами 115, 74 и 74
Найти высоту треугольника со сторонами 106, 98 и 16
Найти высоту треугольника со сторонами 140, 127 и 59
Найти высоту треугольника со сторонами 33, 20 и 18
Найти высоту треугольника со сторонами 149, 149 и 145
Найти высоту треугольника со сторонами 115, 74 и 74
Найти высоту треугольника со сторонами 106, 98 и 16