Рассчитать высоту треугольника со сторонами 141, 140 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 140 + 64}{2}} \normalsize = 172.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172.5(172.5-141)(172.5-140)(172.5-64)}}{140}\normalsize = 62.5328664}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172.5(172.5-141)(172.5-140)(172.5-64)}}{141}\normalsize = 62.0893709}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172.5(172.5-141)(172.5-140)(172.5-64)}}{64}\normalsize = 136.790645}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 140 и 64 равна 62.5328664
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 140 и 64 равна 62.0893709
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 140 и 64 равна 136.790645
Ссылка на результат
?n1=141&n2=140&n3=64
Найти высоту треугольника со сторонами 147, 108 и 71
Найти высоту треугольника со сторонами 52, 47 и 16
Найти высоту треугольника со сторонами 119, 87 и 40
Найти высоту треугольника со сторонами 93, 85 и 18
Найти высоту треугольника со сторонами 134, 103 и 34
Найти высоту треугольника со сторонами 141, 83 и 66
Найти высоту треугольника со сторонами 52, 47 и 16
Найти высоту треугольника со сторонами 119, 87 и 40
Найти высоту треугольника со сторонами 93, 85 и 18
Найти высоту треугольника со сторонами 134, 103 и 34
Найти высоту треугольника со сторонами 141, 83 и 66