Рассчитать высоту треугольника со сторонами 141, 81 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 81 + 73}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-141)(147.5-81)(147.5-73)}}{81}\normalsize = 53.8129282}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-141)(147.5-81)(147.5-73)}}{141}\normalsize = 30.9138098}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-141)(147.5-81)(147.5-73)}}{73}\normalsize = 59.7102354}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 81 и 73 равна 53.8129282
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 81 и 73 равна 30.9138098
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 81 и 73 равна 59.7102354
Ссылка на результат
?n1=141&n2=81&n3=73
Найти высоту треугольника со сторонами 128, 80 и 70
Найти высоту треугольника со сторонами 125, 88 и 58
Найти высоту треугольника со сторонами 86, 52 и 46
Найти высоту треугольника со сторонами 143, 85 и 74
Найти высоту треугольника со сторонами 149, 147 и 120
Найти высоту треугольника со сторонами 137, 105 и 72
Найти высоту треугольника со сторонами 125, 88 и 58
Найти высоту треугольника со сторонами 86, 52 и 46
Найти высоту треугольника со сторонами 143, 85 и 74
Найти высоту треугольника со сторонами 149, 147 и 120
Найти высоту треугольника со сторонами 137, 105 и 72