Рассчитать высоту треугольника со сторонами 141, 83 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 83 + 60}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-141)(142-83)(142-60)}}{83}\normalsize = 19.9723426}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-141)(142-83)(142-60)}}{141}\normalsize = 11.7567691}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-141)(142-83)(142-60)}}{60}\normalsize = 27.6284073}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 83 и 60 равна 19.9723426
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 83 и 60 равна 11.7567691
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 83 и 60 равна 27.6284073
Ссылка на результат
?n1=141&n2=83&n3=60
Найти высоту треугольника со сторонами 81, 73 и 48
Найти высоту треугольника со сторонами 143, 91 и 84
Найти высоту треугольника со сторонами 144, 125 и 121
Найти высоту треугольника со сторонами 117, 76 и 59
Найти высоту треугольника со сторонами 112, 106 и 79
Найти высоту треугольника со сторонами 75, 66 и 55
Найти высоту треугольника со сторонами 143, 91 и 84
Найти высоту треугольника со сторонами 144, 125 и 121
Найти высоту треугольника со сторонами 117, 76 и 59
Найти высоту треугольника со сторонами 112, 106 и 79
Найти высоту треугольника со сторонами 75, 66 и 55