Рассчитать высоту треугольника со сторонами 141, 97 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 97 + 72}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-141)(155-97)(155-72)}}{97}\normalsize = 66.6409487}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-141)(155-97)(155-72)}}{141}\normalsize = 45.8451917}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-141)(155-97)(155-72)}}{72}\normalsize = 89.780167}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 97 и 72 равна 66.6409487
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 97 и 72 равна 45.8451917
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 97 и 72 равна 89.780167
Ссылка на результат
?n1=141&n2=97&n3=72
Найти высоту треугольника со сторонами 146, 126 и 26
Найти высоту треугольника со сторонами 66, 49 и 29
Найти высоту треугольника со сторонами 97, 77 и 24
Найти высоту треугольника со сторонами 69, 48 и 29
Найти высоту треугольника со сторонами 99, 86 и 43
Найти высоту треугольника со сторонами 42, 37 и 11
Найти высоту треугольника со сторонами 66, 49 и 29
Найти высоту треугольника со сторонами 97, 77 и 24
Найти высоту треугольника со сторонами 69, 48 и 29
Найти высоту треугольника со сторонами 99, 86 и 43
Найти высоту треугольника со сторонами 42, 37 и 11