Рассчитать высоту треугольника со сторонами 142, 100 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 100 + 85}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-142)(163.5-100)(163.5-85)}}{100}\normalsize = 83.7201109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-142)(163.5-100)(163.5-85)}}{142}\normalsize = 58.9578246}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-142)(163.5-100)(163.5-85)}}{85}\normalsize = 98.4942482}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 100 и 85 равна 83.7201109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 100 и 85 равна 58.9578246
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 100 и 85 равна 98.4942482
Ссылка на результат
?n1=142&n2=100&n3=85
Найти высоту треугольника со сторонами 48, 37 и 23
Найти высоту треугольника со сторонами 119, 73 и 70
Найти высоту треугольника со сторонами 111, 81 и 62
Найти высоту треугольника со сторонами 150, 145 и 63
Найти высоту треугольника со сторонами 127, 98 и 93
Найти высоту треугольника со сторонами 108, 94 и 39
Найти высоту треугольника со сторонами 119, 73 и 70
Найти высоту треугольника со сторонами 111, 81 и 62
Найти высоту треугольника со сторонами 150, 145 и 63
Найти высоту треугольника со сторонами 127, 98 и 93
Найти высоту треугольника со сторонами 108, 94 и 39