Рассчитать высоту треугольника со сторонами 142, 102 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 102 + 74}{2}} \normalsize = 159}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159(159-142)(159-102)(159-74)}}{102}\normalsize = 70.9577339}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159(159-142)(159-102)(159-74)}}{142}\normalsize = 50.9696398}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159(159-142)(159-102)(159-74)}}{74}\normalsize = 97.8066062}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 102 и 74 равна 70.9577339
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 102 и 74 равна 50.9696398
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 102 и 74 равна 97.8066062
Ссылка на результат
?n1=142&n2=102&n3=74
Найти высоту треугольника со сторонами 129, 94 и 64
Найти высоту треугольника со сторонами 145, 101 и 55
Найти высоту треугольника со сторонами 148, 112 и 91
Найти высоту треугольника со сторонами 53, 47 и 41
Найти высоту треугольника со сторонами 99, 80 и 71
Найти высоту треугольника со сторонами 132, 117 и 93
Найти высоту треугольника со сторонами 145, 101 и 55
Найти высоту треугольника со сторонами 148, 112 и 91
Найти высоту треугольника со сторонами 53, 47 и 41
Найти высоту треугольника со сторонами 99, 80 и 71
Найти высоту треугольника со сторонами 132, 117 и 93