Рассчитать высоту треугольника со сторонами 142, 102 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 102 + 86}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-142)(165-102)(165-86)}}{102}\normalsize = 85.215684}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-142)(165-102)(165-86)}}{142}\normalsize = 61.211266}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-142)(165-102)(165-86)}}{86}\normalsize = 101.069765}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 102 и 86 равна 85.215684
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 102 и 86 равна 61.211266
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 102 и 86 равна 101.069765
Ссылка на результат
?n1=142&n2=102&n3=86
Найти высоту треугольника со сторонами 92, 92 и 2
Найти высоту треугольника со сторонами 127, 126 и 20
Найти высоту треугольника со сторонами 136, 124 и 75
Найти высоту треугольника со сторонами 123, 77 и 61
Найти высоту треугольника со сторонами 66, 49 и 20
Найти высоту треугольника со сторонами 140, 97 и 47
Найти высоту треугольника со сторонами 127, 126 и 20
Найти высоту треугольника со сторонами 136, 124 и 75
Найти высоту треугольника со сторонами 123, 77 и 61
Найти высоту треугольника со сторонами 66, 49 и 20
Найти высоту треугольника со сторонами 140, 97 и 47